

Sending SMS w/ Process
Builder & Flows

STEVE ROCH

Updated 11.15.2022

1

Contents

Sending SMS with Process Builder & Flows Basics .. 2

Methods.. 2

Method #1 – Simple .. 3

Controlling SMS History Owner behavior (Incoming Replies Especially) – User Management 9

Relating Outbound SMS to an Alternate Object ... 12

Method #2 – Apex Class... 14

Method #3 – Apex Triggers .. 18

Send MMS (Pictures or VCards/VCF) via Process Builder .. 20

Send Ringless Voicemail via Process Builder ... 23

Verify Number via Process Builder ... 24

Dynamic Sender Number ... 26

Record based Sender Number (Sticky Sender).. 27

Dynamic Sender Number – Record Owner ... 28

Dynamic Sender Number – Geography or Business Rule Based .. 29

Dynamic Sender Number – Incoming SMS ... 29

Triggering from Tasks or Events ... 30

Dark Hours .. 32

Roll-up SMS Conversations to Parent Objects .. 33

Create a Contact/Lead Last_SMS field ... 35

Triggered Texting to Internal Users .. 36

Hyperlink Tracking Actions - Update a Lead Score .. 37

Drip Campaigns ... 39

iText, Surveys, ChatBots (iText – Intelligent Texting) .. 41

Using Salesforce Flows .. 42

Troubleshooting SMS Process Builders, Flows and Scheduled SMS .. 45

About the Author .. 48

2

Sending SMS with Process Builder & Flows Basics

Salesforce Process Builder and Flows is a no-coding method to easily handle triggering Outbound Text
Messages as well as to process Incoming Messages based on Keywords or other factors. One can
literally trigger on any object. This document also shows how to use APEX Triggers as an alternate
method for advanced developers. Common objects to trigger from are:

Lead/Contact – Common use cases are when leads are created or when various fields change and you
want to trigger an Outbound SMS.

Birthday SMS – place a trigger on the Contact.Birthdate field to schedule an SMS automatically every

year – read about this specific use case in Scheduled SMS with Process Builders

Meeting Reminders – place a trigger on the Salesforce EVENT object or custom Appointment objects

such as with Salesforce Field Service. Read about this specific use case in the dedicated document

named: SMS Event Reminders

SMS_History – Ownership/Notification overrides. Commonly, customers have complex business rules

that dictate changing the default platform behavior of an incoming message inheriting from its

preceding outbound (including the Owner field). Thus, customers place triggers on either the Outgoing,

Incoming or both to re-route based on their custom business logic.

SMS_History – Especially useful for incoming SMS – read the message and do something else based on
the Incoming Message, either updating the Salesforce record or sending out some other question based
on the reply. Useful for Surveys, i.e. Reply with INTERESTED or NO and then SMS_History.Message =
INTERESTED updates a field or status in the corresponding Salesforce record but for this case you should
really just use the 360 SMS iText functionality (aka Surveys/Chatbots) which is a no coding approach to
this sort of use case. Read more about iText in Surveys & Incoming Keyword Processing.

Survey_Response – Although 360SMS has a dedicated Survey Action Handler product now for taking

common actions on iText/Survey question responses, one can certainly do it themselves with triggers on

the incoming Survey Response object.

Custom Objects – Similar to Lead/Contact use cases. 360 SMS supports triggered messages from any

custom object and its SMS Templates and Surveys support all custom objects.

Methods

There are three primary methods of triggering an outbound or scheduled SMS:

Method #1 – Simple: This is good for customers new to process builder or flows.

Method #2 – Apex Class: An alternate method that uses a single command with a concatenated

formula string of parameters. Handy because it’s copy/pastable but missing some of the richness of

Method #1.

Merthod #3 – Apex Triggers: This is for advance developers that prefer Apex Triggers over PB’s or Flows

https://getconga.com/products/data-management/actiongrid/?f=360-SMS-Triggered-Scheduled-SMS-with-Process-Builder.pdf
https://boldercrm.com/download.php?f=360-SMS-Event-Reminder-Triggered-SMS.pdf
https://boldercrm.com/download.php?f=360-SMS-Surveys-and-Incoming-Keyword-Processing.pdf

3

Method #1 – Simple

A few simple settings is all it takes to trigger a message:

First off, Create a Record to for the Scheduled SMS object then set these fields either via a Process

Builder or Flow. These are listed in order of importance, the first 5 being the minimum requirement.

Figure 1 - The most important 5 fields required for sending an SMS – note you can also set the QUESTION field which is the first
question of the 360 SMS Survey object (aka iText) which will then trigger an automatic Question/Answer survey. And you can
set the Scheduled_Time, Attachments. Look to the flow example for more possibilities and we strongly recommend Flows over
Process Builders.

1. Scheduled SMS Name: Must be the record ID field of the triggered object/record and this Record

ID’s object must match the object of the SMS Template or Survey Question, i.e. if triggering from a

Lead the Template’s or Survey’s object must be LEAD.

2. Related Object Id: Set the Related Object Id to the record ID of the record where the SMS History

should show up and even more importantly this governs the Object/Record that an Incoming SMS

response will come into.

a. This field has nothing to do with the Template/Survey object, it only governs where the SMS

History appears after it’s sent. Note that if using the Scheduled Time field to schedule the SMS

instead of sending it immediately, this field DOES NOT make it so that the Scheduled SMS

shows in the related list of the record. You must explicitly also set that objects ID value as well,

e.g. Scheduled_SMS.ContactId

b. Even though it seems redundant this adds value especially for triggers like Event Reminders

where you set the Scheduled SMS Name = Event.Id while setting the Related Object Id =

Event.WhoId because the Salesforce Event object does not allow related lists like the SMS

4

History. Other use cases would be triggering from an Opportunity but wanting the SMS to

appear in the Contact so that the reply comes back to the Contact record. However, in this

use case you are better off to keep the Related Object Id = Opportunity.Id and use the

techniques documented in the section below named “Roll-up SMS Conversations to Parent

Objects”

3. Phone Api: Supply the phone field API Name to send the message TO. This can be a string such as

“MobilePhone” or “Mobile_Phone__c” (custom field) or the actual phone value referenced from the

record, i.e. Lead.MobileNumber but it can also be pulled from the Incoming SMS SENDER_NUMBER,

set with a formula, or for SMS to employees you might use the User.MobileNumber.

a. Especially when using the Scheduled Time field to schedule the SMS, we strongly recommend

using the Field Name for the PhoneAPI value rather than the Field Reference because the App

will dynamically get the phone value at the time it fires, whereas if you explicitly set the value via

Field Reference but the MobilePhone field is blank at the time, your SMS won’t fire even if you

set the value. Or if the MobilePhone field changes in between the time that the message is

scheduled versus when it Sends, then the old value would be used.

4. Sender Number: This is the number that you are sending FROM. This can also be a referenced field

such as Lead.Owner.Phone (so as to send from different sales people) or a formula such as different

geographies using different numbers, such as Lead.Sticky_Sender__c (more below in the section

titled: Dynamic Sender Number. If you only have one outbound number in your org, the field is

optional and need not be supplied.

a. The sender number must always be in format CountryCode+Number with absolutely no

formatting or special characters, e.g. 17206050632. When dynamically setting the

SenderNumber such as from Contact.Owner.Phone or from the Incoming

SMS_History.To_Number use this valuable formula below to strip out all the characters.

5

a. We recommend using the special 360SMS custom field named Sticky_Sender__c for the Sender

Number value. This is a custom formula field that the Send SMS buttons and Conversation View

recognize to override the users Default SMS Number with the formula value. The idea is that the

number “Sticks” to the record, so the customer always receives SMS from the same number.

i. The formula field allows one to define their own business logic for record-based sender

numbers so the customer always receives SMS from the same number.

ii. This is useful for geography-based solutions (USA vs. UK numbers) or when each

Record.Owner has their own sender number.

iii. Area Code matching – many orgs want the SMS Number to match the customers Area Code

so it looks like a local number. They use an Area Code formula plus a sticky_sender formula

that matches area code to a list of matching SMS Numbers.

iv. Sticky_Sender is especially useful for Batch Texting so a marketing user can batch text

many customers across many numbers.

5. The Message Text: There are three ways to set the body of the message that will be sent

a. SMS Template: Set the ID of the Template to be used. This can be obtained from the URL of the

template.

i. You may also use a reference field such as Contact.SMS_Template (if you’ve created a SMS

Template Id on your Contact) – see the section Create a Master Send SMS Handler

/**

Clean the phone number that is entered to remove all formatting. Handle the

situation where the user adds a + or 1 at the start which otherwise would lead to a

number like 119998887777 and thus an invalid number

**/

SUBSTITUTE (

 '+1'

 &

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(Owner.Phone , /*Contact.Owner.Phone*/

 "(",""),

 ")",""),

 " ",""),

 "-",""),

 "+",""),

 ".",""),

 "+11","+1" /*if number was entered as +1(999) 888-7777 we strip out the extra 1 */

)

6

b. [iText/Survey] Question: As an alternative to setting an SMS Template, you may set the

Question field. The QuestionId is usually the first question of a 360 SMS Survey. This then

triggers the survey question and responses are automatically triggered from there on. We highly

recommend utilizing the Survey object instead of Templates because most outbound SMS will

likely generate a response which can be automatically handled by the 360 SMS Survey/ChatBot

tool.

i. It is an important, purposeful and brilliant design element that we pass in a Question Id of

the survey rather than the Survey Id. Even though 99% of the time you will use the

QuestionId of the first question we have seen numerous use cases where it’s useful to start a

customer in the middle question of some particular survey such as when the survey is serving

two purposes and the top of the survey asks questions that a particular customer has already

answered or we have the information but we don’t want to create a whole new survey so we

strategically send them a different question in the survey.

7

Figure 2 - Obtain the question Id from the first question of a Survey

c. Message Text: You may create your own message text with a formula or field reference

although we rarely recommend this as then you have no way to modify your message text other

than modifying your Process Builder. Still it’s a powerful and distinct option.

6. Owner: As of version 1.196.54 and above you can set the Scheduled_SMS.Owner and the resulting

SMS_History.Owner will carry forward. THIS IS SUPER IMPORTANT because ownership of the

Outgoing message controls who will receive the notification for the incoming reply. See below for a

more detailed discussion of ownership implications and techniques.

Controlling SMS History Owner behavior (Incoming Replies Especially) – User Management

7. Scheduled Time: The scheduled time field can be left blank in which case it’s IMMEDIATELY sent but

WE DO NOT RECOMMEND EVER SENDING IT IMMEDIATELY, please consider adding at least 1 or 2

minutes to NOW() because it buys you that extra 1 or 2 minutes to delete the Scheduled SMS if you

made a mistake and we believe having everything Scheduled creates a more consistent SF User

experience and you can troubleshoot 1000% easier. So we say ALWAYS set this field.

a. If using this feature, you MUST also set the Lookup field of the object whose Related List it

should appear under, such as Contact or Lead. Setting the Related Object ID field is not the

same as setting ContactId or LeadId, that field has a different purpose noted below.

b. Usually you will use a formula such as these common ones below. Remember, Salesforce date

math is in DAYS so you might Google your desired syntax for minutes and hours.

8

i. NOW() + 1 /* Same time as today + 1 day, i.e. tomorrow */

ii. NOW() + (1/24) /* 1 hour from now */

iii. NOW() + (10/60/24) /* 10 minutes from now */

iv. Specifying a specific time of day can be tricky because Salesforce stores Time values in

Greenwich Mean Time (GMT) which you must compensate for. Below are two common

example formulas that compute a specific Date plus Time.

v. Ask about the 360 SMS Time Zone Anything™ product for dynamic Time Zone and

Daylight Savings Time handling.

b. More on Scheduled SMS in these two documents:

i. Triggered Scheduled SMS w/ Process Builder

ii. Triggered Scheduled SMS – Event Reminders

8. Attachment/Document Id: You may set an optional Document.Id value of a picture or other

supported document stored in the Salesforce Document object. Refer to the dedicated section

below titled: Send MMS (Pictures or VCards/VCF) via Process Builder

9. Channel: You may specify a channel such as SMS or WhatsApp. Not using the parameter or setting

it to null will send the message as SMS.

/* Schedule Birthday wish for this yr 16:00 GMT = 8:00am Mountain Time */

/* DateTime has to be in format: YYYY-MM-DD HH:MM:SS */

DATETIMEVALUE(TEXT(YEAR(TODAY())) & "-" &

 TEXT(MONTH([Contact].Birthdate)) & "-" &

 TEXT(DAY([Contact].Birthdate)) & " 16:00:00"

)

/***

SF date math is tricky when wanting a specific time of day such as 8:00am EST. SF wants the

field in format: YYYY-MM-DD HH:MM:SS, plus we have to compensate that SF returns everything in

Greenwich Mean Time so you have to adjust for your time zone.

1. Convert ActivityDateTime (shown in picklist as label TIME) into a text string

2. We just need the YYYY-MM-DD portion of it, so take left 10 characters

3. Now add the time component back adjusting for time zone Eastern Time = GMT minus 5 hrs.

4. Lastly convert it back into a datetimevalue

***/

DATETIMEVALUE(LEFT(TEXT(ActivityDateTime),10) & " 13:00:00")

/* 13:00PM GMT (1:00 PM in UK) = 8:00am EST (GMT -5)*/

https://boldercrm.com/download.php?f=360-SMS-Time-Zone-Anything.pdf
https://boldercrm.com/download.php?f=360-SMS-Triggered-Scheduled-SMS-with-Process-Builder.pdf
tel:+17206050632?f=360-SMS-Event-Reminder-Triggered-SMS.pdf

9

Controlling SMS History Owner behavior (Incoming Replies Especially) – User Management

Whether sending SMS manually or programmatically, a common request is to override the normal

behavior for the Incoming SMS Ownership. A key principle of the 360SMS platform is that the Incoming

inherits from its preceding Outgoing.

The incoming inherits all lookup field relationships from its preceding Outbound including templates,

iText questions and most importantly OWNER. And since Owner governs who gets notified of the

incoming SMS, developers commonly want to change this behavior.

There are three methods to override the platforms natural behavior:

1. Scheduled_SMS.Owner - In versions >= 1.196.54 one can now programmatically set

Scheduled_SMS.Owner but only with a ScheduledTime and then the resulting SMS_History will

indeed set SMS_History.Owner = Scheduled_SMS.Owner. This only works if the ScheduledTime is

set such a NOW() + 1/60/24. We recommend all programmatic SMS use a time even if only 1

minute from now because it’s just so much easier to debug and creates an opportunity to delete the

scheduled SMS. So, this then the whole Ownership discussion is moot because you just set

ScheduleSMS.Owner to the desired owner and your set. Just make sure that the Owner +

SenderNumber combination is set in SMS User Config or use the “All Users” + SenderNumber

technique.

a. Important: This is not a licensing workaround. The current user that is triggering the SMS

must still have a 360SMS license. This only affects the outbound SMS_History.Owner value

so that the incoming.owner inherits from the outbound.owner.

2. When Sending SMS manually using the “Send SMS” button either via Batch or Singularly, the

“Relate Incoming to Record Owner” feature presents itself when enabled (General Settings). This

feature overrides the default inheritance behavior and instead assigns the IncomingSMS.Owner to

the SMS_History.Related_Records → Record.Owner. Figure 3 illustrates how the checkbox sets the

field value to “Parent Record Owner” to override the incoming.

a. Note that the Outgoing.Owner is still the current SF user. The Incoming.Owner will be set to

the Contact.Owner when it arrives because of the principle that IN inherits from OUT.

b. One cannot set the “Relate Incoming to Record Owner” value when triggering an outbound

SMS because the Scheduled SMS does not have this field.

10

Figure 3 – Relate Incoming to Record Owner only sets the Incoming.Owner while retaining the user that sent the outbound

3. Set a Flow/Process Builder on the SMS_History object detecting the SMS outgoing by its TemplateId,

or whatever criteria is desired. Then “manually” update the outbound Owner using your business

logic. Now, because Incoming.Owner inherits from Outgoing.Owner, problem solved.

a. Some customers will want other users texting Outbound to customers but they always want

the incoming to be assigned to the Contact.Owner.

4. There is an obscure but effective workaround for SMS History owner manipulation via programmatic

SMS although with the Scheduled_SMS.Owner this technique is now obsolete:

11

a. Setting the “Sender Number” value to a concatenated string of UserId + Sender_Number will

change the behavior such that the outbound SMS_History.Owner is set to the UserId without

any further Process Builder manipulation.

b. Below is a sample process builder setting the outbound SMS.Owner as the Record.Owner

c. Important: As of this writing, one cannot set the Scheduled Time value and have this trick

work, it only works for immediately triggered SMS.

d. Important: This is not a licensing workaround. The current user that is triggering the SMS must

still have a 360SMS license. This only affects the SMS_History.Owner value.

e. Important: If using the All Users option for User + Number configuration you will need to

manufacturer the string with the word “AllUser” + Sender_Number, e.g. AllUser17206050632

Figure 4 - Set the Sender Number parameter with a concatenated string of UserId+SenderNumber and the resulting outbound
SMSHistory.Owner will be the UserId

12

Relating Outbound SMS to an Alternate Object

The Related Object Id, which is available only for Method #1, has some interesting uses, primarily when

it is desired to link the message to an alternate object than where it is being initiated from and where its

template is based on. This can be very useful as the REPLY comes back into whatever the RELATED

OBJECT is. Use cases:

1. EVENT Reminders and TASK object Triggers

a. Linking a message to the parent CONTACT/LEAD object when the message is initiated from a

Salesforce EVENT or TASK object. This is actually required in this case because the “Black

Box” EVENT and TASK objects cannot have any related objects linked to them including SMS

History. Jump to section Triggering from Tasks or Events for more info.

2. Linking a message initiated from an Opportunity to a primary Contact or Account

3. Triggering messages to internal users in which case you should use the Related Object to link

the message to the USER object rather than the main object so that the internal notification

does not appear in the Contact/Lead SMS History and look like a msg was sent to the customer.

Below is an example of triggered SMS on the Salesforce Event object where we want the template or

survey to be based on the EVENT object so we can merge in the date/time of the event but we want the

SMS to appear under the Contact or Lead record.

Read more about the idiosyncrasies of the Event based triggers here: Triggered Scheduled SMS – Event

Reminders

Figure 5 - Event Reminders should use a Template based on the EVENT but the SMS History will appear under the Contact/Lead

https://boldercrm.com/download.php?f=360-SMS-Event-Reminder-Triggered-SMS.pdf
https://boldercrm.com/download.php?f=360-SMS-Event-Reminder-Triggered-SMS.pdf

13

Below is a second example which triggers an internal user notification SMS when a new Lead is created

from the Web Site. Note how the Phone API is pulled from Lead.Owner.User.MobilePhone and the

Related Object Id is set to Lead.OwnerId. This allows us to use a template based on the Lead Object so

we give the Lead.Owner the lead details but it keeps the SMS History from showing up under the Lead

itself.

Figure 6 - Typical internal alert via SMS sending to an employee but triggered from the Lead creation

Read the related section named Roll-up SMS Conversations to Parent Objects to learn a technique

where you allow the SMS to be sent/linked from the child object but then with a process builder you

additionally set the Ids of the parent objects. This is useful when triggering an SMS from an Opportunity

but you want it to appear in the Opportunity as well as the parent Contact and parent Account.

14

Method #2 – Apex Class

360 SMS also has an Apex class that can either be called in Process Builder, Flows or in trigger code.

There is an Apex class for sending regular SMS and another one for sending MMS which includes a

parameter for the picture or file. There are also Apex classes for Ringless Voicemail and Verify Number.

The Apex class has a single Param field that the Process Builder exposes. You supply a comma separated

string into this Param field using formula editor. This method is nice for copying/pasting but we find

little use for it beyond that. One of the best things about this method is that Salesforce allows

comments in formula fields, so we strongly recommend commenting your formulas using the /* some

comment */ syntax.

For the regular Send SMS From Process Builder Apex Class the string of parameters is defined as:

Param1: Id of the primary object you are triggering from – this must match your Template object and it

will be the primary object that the outbound SMS will relate to.

Param2: The API name of the phone field for that object or it can be any value evaluating to a valid

phone number

Param3: This parameter can take an SMS TemplateId, a QuestionId or a String.

TemplateID: Use a Template Id pulled from the URL of an SMS Template – its object must

match the object defined in param1.

QuestionId: Use a Question Id which is typically the first Question of a Survey. This will

trigger survey question #1 and all responses will be handled automatically.

String: You may pass a string in this parameter if you do not want to use templates, this

works well for simple SMS messages. The string also supports merge tags. e.g.

‘Okay {Contact.firstname} – this is a msg w/o a template’

Param4: Outbound phone number, if blank it sends the default phone number for the org or the first

phone number found in the 360 SMS User Configuration tables for the current user.

15

Figure 7 - Code example of sending regular SMS via the "Send SMS From Process Builder" Apex class

16

Below are a couple of code snippets for easy copy/pasting

/***

APEX Parameters Defined:

Param1: Id of the primary object

Param2: The API name of the phone field for that object or an actual phone value

Param3: Can be one of three:

 1. Template Id – hardcoded ID or referenced field like Lead.SMS_Template

 2. Question Id - 1st question of a Survey - a23f4000000uObmAAE

 3. Straight Text - can include merge tags

 This example is calling the 1st question of a Survey

Param4: Optional Outgoing Phone Number if blank uses default. Here we have a

different # for UK customers than USA

Carefully note the placement of the commas. Formula creates a sting like:

003f400000P3noEAAR,MobilePhone,a23f4000000uObmAAE,17206050632

***/

[Lead].Id & ',' &

'MobilePhone' & ',' &

'a23f4000000uObmAAE' & ',' &

IF([Lead].Country = 'UK', '441234480564', '17206050632')

/***

APEX Parameters Defined:

Param1: Id of the primary object

Param2: The API name of the phone field for that object or an actual phone value

Param3: Can be one of three:

 1. Template Id – hardcoded or referenced like Lead.SMS_Template

 2. Question Id - 1st question of a Survey - a23f4000000uObmAAE

 3. Straight Text - can include merge tags

 This example is referencing a custom field on the Lead which is a lookup to the

 actual SMS Template Id. That’s a nice trick so you can have other PB’s simply

 setting this field and triggering this code to do the actual sending SMS

Param4: Outbound Sender Number

Carefully note the placement of the commas. Formula simply creates a string like:

003f400000P3noEAAR,MobilePhone,a23f4000000uObmAAE,17206050632

***/

[Lead].Id & ',' &

'MobilePhone' & ',' &

[Lead].SMS_Template__c & ',' &

[Lead].sticky_sender__c

17

Figure 8 - Example APEX when triggering a reply from an Incoming SMS History

18

Method #3 – Apex Triggers

For more advanced developers that prefer using APEX Triggers over process builder, one can simply call

the APEX class named tdc_tsw.GlobalSMSSender.sendSmsWithPhoneAPiAndTemplateId from your

code.

The class accepts three parameters:

1. Mobile Phone Field: The field where the phone number of the contact would be stored, e.g.

objContact.MobilePhone

2. Template Id: The TemplateId similar to the methods described above, e.g. 'a022800000Pj0Ia'

3. Object Id: The id of the record which is being sent the SMS, e.g. objContact.id

Below is a sample trigger from the CONTACT object.

Trigger (for Contact object)
trigger ContactTrigger on Contact (after insert) {

 if(trigger.isAfter && trigger.isInsert) {

 ContactTriggerHandler.onAfterInsertContact(trigger.new);

 }

}

Apex Class
public class ContactTriggerHandler {

 public static String onAfterInsertContact(List<Contact>

lstContact) {

 String result;

 if(lstContact.size() > 0) {

 for(Contact objContact : lstContact) {

 if(objContact.MobilePhone != null) {

 try {

tdc_tsw.GlobalSMSSender.sendSmsWithPhoneAPiAndTemplateId(

objContact.MobilePhone,

'a022800000Pj0Ia',

objContact.id);

 result = 'Success';

 } catch(Exception e) {

 result = 'failure';

 }

 }

 }

 }

 return result;

 }

}

19

Note that there are other APEX methods available as well which are intuitively named:

Figure 9 - Additional APEX methods that be called via APEX code

20

Send MMS (Pictures or VCards/VCF) via Process Builder

MMS is the term for sending or receiving files such as Pictures or VCards (.vcf)

in a text message. A VCard is a special file format that is like sending a Contact

record from your phone, such that when the customer clicks it, their phone

asks “Do you want to add this as a Contact.” Now you are a contact on their

phone for incoming Caller Id and SMS.

The key is to set both the Scheduled_SMS.Channel and “Attachment/

Document Id” fields. The “Attachment/ Document Id” must be a previously

uploaded Document record whether that be a Picture or a VCard.

Figure 10 below demonstrates a completely dynamic solution where the

picture is derived by navigating to a custom field on the USER record such as

Contact.Owner.Picture_Doc_Id__c (a custom field holding the Salesforce

Document Id of the Salesforce User). Similarly, you could upload a VCard(.vcf

file) to Salesforce and reference its ID in a custom User field to then trigger an

SMS with the users VCard so that customers can quickly add them to their

Phone’s Contacts by clicking the VCard.

Figure 10 - We obtain the picture by traversing up to the USER object and accessing a custom Picture_Doc_Id field.

This dynamic method assumes you have added a Picture or VCard to the native Salesforce DOCUMENTS

object. This can be a little awkward as Lightning does not expose the DOCUMENTS object anymore, so

21

you must use Classic to upload the files, or you can send yourself an incoming MMS with the picture/vcf

file and since 360SMS uses the DOCUMENTS object you can reference it that way.

Screen capture on the next page shows uploading files to the native Salesforce DOCUMENTS object.

Figure 11 - Uploading Pictures/Files for use in triggered MMS

Sending a .vcf (vCard) is equally simple. First create the VCard in your Email Application of choice and

save it somewhere and then upload it to Salesforce like shown in Figure 11. The as shown in Figure 10

simply reference that VCard (Document Id) and set the Channel to MMS.

22

Important note on VCF: Note that .VCF is a special file type that is slightly different than a regular

picture and thus needs to be enabled in the SMS Setup → General Settings as shown below:

23

Send Ringless Voicemail via Process Builder

360SMS version 1.154.4 and above offers the Ringless Voicemail Module (purchased separately). A

Ringless Voicemail can be triggered just like the above instructions for SMS and MMS using the APEX

method, with the only difference being that it uses the APEX class named “Send VoiceDrop From

Process Builder.” Other than that, it’s the same process of constructing a comma separated string to

pass into the Param value but in this case, you pass in the ID of the VoiceDrop Template obtained from

the record URL just like getting an SMS Template Id.

Figure 12 - Triggering a Ringless Voicemail is very similar to triggering SMS or MMS

24

Verify Number via Process Builder

360SMS version 1.162 and above offers the Verify the Number (VTP) Module (purchased separately).

The feature provides buttons at the Record Detail level and Batch for verifying whether a phone field

value is a valid Mobile number or Landline. VTP can be triggered such as when the phone field is

changed, or the lead is first created. Similar to triggered SMS, MMS and Ringless Voicemail it uses a

simple APEX method, named “Verify Phone from Process Builder” This method is simpler though as it

accepts just two parameters, the API name of the Phone field to validate and the RecordId of the record

(Contact, Lead, etc.)

Figure 13 - Manually Verify the Number on a single record or in Batch from a list view button or Trigger it!

Figure 14 - Verify the Phone can be called with an APEX action in Process Builder

25

Now you can write a simple Process Builder on the Lead.Type or Contact.Type to move your phone

values into the correct field. The example below assumes that either a website or end-users always

enter the phone number into the PHONE field first. Then the VTP process shown in Figure 14 triggers an

update to the Lead.Type field. In Figure 15 we detect that TYPE = “Mobile” and so we know we can

move the value from the Lead.Phone to the Lead.MobilePhone.

This trigger also works fabulously when using the VTP button on a List View (Batch VTP). Simply add this

trigger first and then batch verify all your Phone fields and it will “automatically” move the values into

the MobilePhone field for your entire database or leave them if the number is validated as a Landline.

Tremendous value!!

Figure 15 - After verifying a number - trigger the movement of the value to the correct field (Phone --> MobilePhone in this case)

26

Dynamic Sender Number

No matter which method one uses, it is common that the developer wants to dynamically set the

outbound Sender Number so that the customer experience is to interact from a single phone number.

This only applies to organizations with multiple sender numbers.

The sender number must always be in format CountryCode+Number with absolutely no formatting or

special characters, e.g. 17206050632. When dynamically setting the SenderNumber such as from

Contact.Owner.Phone or from the Incoming SMS_History.To_Number use this valuable formula to strip

out all the characters:

Figure 16 - Useful formula for reducing a number to 17206050632 format

There are four common use cases:

1. Record Based Sender Number – assign a specific sender number based on business logic such

that all SMS to that Contact or Lead always comes from a single sender number whether that be

Record.Owner based, Geography based or defined by other business logic.

2. Dynamically set the Sender Number based on record owner – pulling from the

<record>.Owner’s designated SMS number.

3. Dynamically set the Sender Number based on geography or some other business logic.

4. Automatically replying to an incoming SMS using the number which the customer wrote to,

the To_Number for an SMS_History of type = Incoming (API name: tdc_tsw__ToNumber__c)

a. Note that the 360SMS iText/Survey tool does this automatically – it always responds

with the original number that the customer wrote to.

/**

Here's an example of getting the Sender Number from the

Contact.Owner.Phone field (USER object).

**/

'1'

&

SUBSTITUTE(

SUBSTITUTE(

SUBSTITUTE(

SUBSTITUTE(

SUBSTITUTE(

SUBSTITUTE(Owner.Phone ,

"(",""),

")",""),

" ",""),

"-",""),

"+",""),

".","")

27

Record based Sender Number (Sticky Sender)

360 SMS allows one to create a custom field named specifically Sticky_Sender__c (you can label it any

way you like). This is a custom formula field that can hold any business logic that one wants, such as

Geography-Based numbers, Area Code matching numbers, Marketing Campaign Based Numbers,

Record.Owner based numbers or it could be defined as the Last SMS number used for the contact. The

point is that any business logic can be defined.

Read the document Area Code Matching SMS Numbers for a specific detailed example.

If the Sticky_Sender field exists, all interface elements of the platform (Buttons, Conversation View and

SMS From Reports) will override the current users Default SMS Number and instead offer this field value

as the default. For example, a marketing user may want to select a large list of contacts for Batch SMS

but want the Sender Number to pull from the sticky sender as its looping through the records. This also

helps distribute batch SMS among multiple numbers thereby reducing spam detection.

Figure 17 - When a sticky sender formula field is defined - it will default as the Sender Phone for batch, single and convo view

Programmatically, one references the Sticky Sender number field to make sure messages are coming

from the correct number and to concentrate the business logic in the formula field.

Figure 18 - Use the sticky sender field for your Sender Number to be consistent and concentrate your business logic in the
formula field

tel:+441234480564?f=360-SMS-Area-Code-Matching-SMS-Numbers.pdf

28

Dynamic Sender Number – Record Owner

Many orgs use separate numbers for each user, primarily for voice call forwarding situations. The

mapping of Users to Numbers is defined in the SMS Setup → User Configuration which is unfortunately

not accessible via Process Builder. However, with a simple customization to your USER object you can

make your Process Builders dynamically obtain the Outbound SMS Sender Number parameter that

either method makes available as an optional parameter.

Simply, create a custom text field named something like User.SMS_Number. Then copy the number

associated to each user into the field. Be careful if using the standard User.MobilePhone or Phone field

as Salesforce formats these numbers, such as (720)605-0632. The number needs to be completely

unformatted and have the country code prefix, i.e. 17206050632.

You can now traverse to the User table such as Lead.Owner/Contact.Owner and get the number from

your custom field. Or better yet define this logic in a Sticky_Sender__c formula field such as:

Owner.SMS_Number__c or using the formula below which makes sure to strip out the various phone

formatting characters.

/**

Here's an example of getting the Sender Number from the

Contact.Owner.Phone field (USER object). Careful, cuz SF will

display a phone field in format (303) 875-7163 even if the

underlying data is entered at 1303-875-7163 so this formula

handles that.

***/

SUBSTITUTE (

 '+1'

 &

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(

 SUBSTITUTE(Owner.Phone ,

 "(",""),

 ")",""),

 " ",""),

 "-",""),

 "+",""),

 ".",""),

 "+11","+1" /*if the # was entered like 19998887777 we strip out the extra 1 */

)

29

Dynamic Sender Number – Geography or Business Rule Based

In larger organizations with many geography’s or complex business rules it is desirable or even a

requirement to use specific sender numbers. In the case of multiple countries, it is a requirement to use

a sender number that matches the country of destination. There are three solutions here:

1. Use the Sticky Sender custom formula field explained above.

2. Utilize the 360 SMS Co-Pilot feature which will use its Area Code/Country Code picker to

dynamically pick the sender number if you have purchased a matching Area Code or Country

Code number in your pool. For more on Co-Pilot refer to this hyperlinked document: Batch

Texting - Auto-Routing

3. Use the Process Builder formula editor to build in your business logic for the Sender Number but

still you are better off now putting your logic in the Sticky Sender formula field rather than

defining the logic in the process builder.

Dynamic Sender Number – Incoming SMS

The third common scenario is to dynamically set the SMS Number parameter based on the Incoming

Message. This is common when responding to Keywords. In this case, you don’t need to lookup the

number from a user table, you simply need to get it from the SMS_History.To_Number field (the

number that the customer wrote to). However, be careful as the value will have a “+” character in front

of it which is invalid for an outbound number, so you must use the SUBSTITUTE function as shown

below to remove the +. The formula is provided below for easy copy/pasting.

/***

APEX Parameters Defined:

Param1: Id of the primary object - pulled from SMS_History.ContactId

Param2: The API name of the phone field for the contact object.

Param3: Can be a TemplateId, QuestionId(first Question of a Survey) or straight text if you

 don’t want to use a Template or Question

Param4: Outgoing Phone # - pulled from Inbound SMS_History.To_Number but we have to

 remove the + that is inherent with inbound numbers

Carefully note the placement of the commas

***/

[tdc_tsw__Message__c].tdc_tsw__Contact__c & ',' &

'MobilePhone' & ',' &

'a08f400000Dfo3fAAB' & ',' &

SUBSTITUTE([tdc_tsw__Message__c].tdc_tsw__ToNumber__c , '+', '')

https://api.whatsapp.com/send?f=360-SMS-Batch-Texting-with-Co-Pilot.pdf
https://api.whatsapp.com/send?f=360-SMS-Batch-Texting-with-Co-Pilot.pdf

30

Triggering from Tasks or Events

The Salesforce Task and Event objects are common objects to trigger off of but require special

understanding and handling because of the challenging design of these native Salesforce objects. With

that in mind the dedicated document named SMS Event Reminders discusses the challenges and

methods at length. Here we will simply state that the challenge is that the TASK and EVENT objects use

the NAME and RELATED TO fields (api names: WhoId and WhatId respectively) as polymorphic ID fields,

meaning that these special fields can hold either a LeadId or a ContactId and the Related To can hold

practically any object Id.

This causes Salesforce developers around the world great frustration because neither the Salesforce

Formula Editor nor Process Builder can traverse to the Lead or Contact tables because Salesforce

doesn’t know which object to go to, so it’s completely blocked.

Furthermore, neither the EVENT nor the TASK object can have a child related list. This impacts 360SMS

(and all other SMS apps) because it’s not a normal object that can have SMS related to it.

Luckily 360SMS has been designed with this in mind. Above you learned about the value of the Related

Object Id parameter. Here is the exact reason for that feature, because usually you’ll want merge tag

information from the Task/Event especially (Date, Time, etc.) but because you have no phone info on

the Task/Event and you want the SMS to appear under the Contact/Lead you’ll set the RelatedObject to

the Contact or Lead. Brilliant!

https://boldercrm.com/download.php?f=360-SMS-Event-Reminder-Triggered-SMS.pdf

31

In the example above we are triggering a simple SMS from the Task object when a user sets the Subject

to “Left Voicemail”.

Most importantly, we set the Related Object Id = Task.WhoId (contact or Lead). If we don’t need any

merge tag data from the Task then we could have simply set the “Scheduled SMS Name” field =

Task.WhoId as well and used a CONTACT/LEAD based template but then we would need two Process

Builder Criteria nodes to detect that the WhoId is either a Contact Id LEFT([Task.WhoId],3) = ‘003’ or

LeadId LEFT ([Task.WhoId],3) = ‘00Q’ .

BTW: Every SF org in the world uses the same object Id prefixes for Contacts (003) or Leads (00Q) and

this is the ONLY way to detect which object a task/event is linked to. Wouldn’t you think Salesforce

would give us separate fields or some easier way to detect the differences. It’s been 15 years already!

With the EVENT object it’s very common to want to merge in the Date, Time and other values so one

almost always bases their Template or Survey Question off of the EVENT object. With the TASK object

it’s probably not necessary to use a Task based template but I was lazy and didn’t want to create two

separate Process Builder criteria’s and Immediate Actions plus two separate Lead and Contact based

Templates or Survey Questions. So this Survey Question below handles either Leads or Contacts.

Note that Salesforce does offer a very limited number of fields from the WHOID relationship via

formulas that they have created but only FirstName and LastName not much else. As noted above

Salesforce does not let you create formulas traversing from the WhoId to the Contact/Lead!

32

Dark Hours

360SMS has a feature titled Dark Hours, which when enabled, delays any Triggered or Scheduled SMS

messages from firing until the “Sending time/Next Day.” In the screen capture below any messages that

were triggered after 4:00pm and before 6:00am will be delayed until 6:00 AM of the following day.

Figure 19 - Dark Hours enabled - any triggered messages will be sent the next day at the given time.

Technically what occurs is that if a process triggers the sending of an SMS during the dark hour time

frame, it will create a Scheduled SMS related list record shown below with the Schedule Date/Time

feature. Then the Scheduled SMS will fire the next day at the start time.

Figure 20 - Triggered SMS during dark hours creates a Scheduled SMS record with the Scheduled Time = Sending time//Next Day

33

Roll-up SMS Conversations to Parent Objects

It is good CRM best practice that when texting either manually or via automation from a child object,

that the SMS “rolls-up” to also display on the parent CONTACT object. Or in the case of texting from a

Contact it should roll-up to the Account so from the Account page one can see all the conversations with

all the contacts.

Straight out-of-the-box the CASE object automatically rolls-up any SMS linked to a Case to the parent

Contact so that when looking at the Contact record you can see contextually each conversation as it is

related to both the Contact and the Case. For other objects we need to intercept the SMS History via

Process Builder and do the roll-up with an Immediate Action updating the SMS History.

Figure 21 - Texting from different cases automatically "rolls-up" the conversation to the Contact as shown here for cases 1106
and 1107 – we want to emulate this same functionality for other child objects.

In the example below (Figure 22), we have a classic child object named Job_Listing which is the child of a

Job and a Contact (a contacts potential interest in a Job that is being offered for a recruiting company).

Usually recruiting firms batch text or trigger text from the Job_Listing and they want to see all the SMS

34

from all the Contacts in the Job’s SMS Conversation View but also from the contact record they want to

see all the Job related texts they’ve sent the Contact (similar to Figure 21 with Cases). This is the perfect

scenario for a ROLL UP. We detect that the SMS History’s primary related Object = Job Listing and then

because the Job Listing is the child of a Job and a Contact we simply update the SMS History with those

values, setting SMS_History.ContactId = Job_Listing.ContactId and SMS_History.Job = Job_Listing.JobId

Note that the platform uses the primary Related Objects NAME field for the Sender Name (the link that

appears above the message and which shows in the Incoming Alert). It’s a good practice when texting

from Child objects to modify the Sender Name with a process builder so that in this case it reads “John

Smith | SF Administrator”, i.e. Contact.Name & “ | ” & Job.Name

Figure 22 - Classic Roll-Up from a child object to the Contact – set the SMS_History.Contact Id = Job_Listing.Contact_Id

35

Create a Contact/Lead Last_SMS field

Often customers want to use Salesforce List Views based on the Contact, Lead or some other custom

object to determine which customers have or have not received an SMS lately. However, because

Salesforce List Views do not allow Cross-Object queries and even Salesforce Reports do not allow for a

Does Not Exist clause, this can be a challenge.

To resolve this Salesforce limitation, we recommend placing a simple Salesforce Process Builder in place

which updates a custom field such as Contact.Last_SMS or Lead.Last_SMS whenever any SMS History

record is created. At your discretion, you could also differentiate Incoming vs. Outgoing by having fields

such as Last_SMS_In and Last_SMS_Out but we usually find a single field to be sufficient.

Create a Process Builder on the SMS History such as the “SMS History – Master Updater Process”

mentioned in previous sections. Then simply detect that the SMS History.Contact or SMS_History.Lead

value is not null (separate criteria nodes). Then update the respective records Last_SMS field with the

SMS_History.Create_Date. Now your field can be used as a filter on List Views.

Figure 23 - Set a Contact.Last_SMS field

36

Triggered Texting to Internal Users

Some customers want to use the power of texting to switch out their old email alert systems to instead

using Text Alerts to the internal users. In the scenario below, we see a use case for a New Lead text

alert sent to the Lead.Owner’s mobile phone with a hyperlink to the Salesforce record so that he/she

can open it quickly in Salesforce1.

Note that we are triggering the message with the Lead.Id so that we may use a Lead based template

which merges in details about the lead and most importantly we set the Phone API field to get the value

from the Lead.Owners Mobile phone field, i.e. Lead.Owner.User.MobilePhone. Thereby sending the

LEAD details to the Owner’s personal cell phone.

Important note: Set the Related Object Id to Lead.OwnerId (a user id) so that the alert does not appear

in the SMS History for the LEAD. Otherwise it looks like this is a message you texted to the customer.

Figure 24 - Sending text alerts to internal users dynamically using the Lead.Owner.User.MobilePhone

Figure 25 - if using this method make sure the USER object is configured for texting

37

Hyperlink Tracking Actions - Update a Lead Score

The 360SMS platform offers an awesome Hyperlink tracking feature which not only notifies the

SMS_History.Owner of the click but can be used in other automations such as incrementing a Lead Score

or a Last_Click_Date field, or perhaps creating a Salesforce Call (Task). Below is a simple example of

incrementing a Lead Score field but the immediate action could be anything you imagine.

Simply create a process builder on the UPDATE of the SMS History object since the Click Count will be

updated automatically each time

Code snippets for easy copy/pasting:

Criteria
/**

Click Count is changing updates a Contact Engagement Score

**/

AND (

 [tdc_tsw__Message__c].Name = 'Outgoing' ,

 NOT(ISBLANK([tdc_tsw__Message__c].tdc_tsw__Contact__c)),

 ISCHANGED([tdc_tsw__Message__c].tdc_tsw__Clicks__c),

 [tdc_tsw__Message__c].tdc_tsw__Clicks__c > 0

)

Immediate Action
/** We need the BLANK check because the math doesn't work when it's blank to add 50 **/

IF(ISBLANK([tdc_tsw__Message__c].tdc_tsw__Contact__c.Score__c),

 0,

 [tdc_tsw__Message__c].tdc_tsw__Contact__c.Score__c

)

+ 50

38

If you are wanting to take action on a specific URL, currently the SMS History object only has the

SMS_History.URL field which unfortunately is the Bitly or TinyURL that is unique to each customer.

Therefore, you must trigger on the Message URL object (child of SMS History holding the many URLS

and actual fields for tracking). We’ve requested that the UrlLink field be moved up to the SMS History.

Criteria above for easy copy/pasting
/**

When the Differentiators doc is clicked, we'll trigger a clever msg to the Contact telling them

that we tracked them just for demo purposes. A real situation could be a message that fires

after 1 hr saying "Have you had a chance to read my document?" - knowing full well that they

opened it.

SMS Template to Fire: a08f400000j92LKAAY = "Differentiators Clicked"

***/

AND (

 [tdc_tsw__Message_Url__c].tdc_tsw__Clicks__c = 1 ,

 ISCHANGED([tdc_tsw__Message_Url__c].tdc_tsw__Clicks__c) ,

 NOT(ISBLANK([tdc_tsw__Message_Url__c].tdc_tsw__SMS_History__c.tdc_tsw__Contact__c)) ,

 [tdc_tsw__Message_Url__c].tdc_tsw__UrlLink__c = 'https://boldercrm.com/download.php?f=360-

SMS-Differentiators.pdf'

)

/* I know you aren't supposed to traverse up to a parent object because if it's null you'll get

a flow error but Message URL can never be orphaned from its parent SMS History unless you have

somehow deleted the original outbound SMS History*/

39

Drip Campaigns

As a value-add from the Bolder CRM + 360 SMS partnership, Bolder CRM has utilized the unique ability

of the 360 SMS platform to programmatically Schedule SMS with Process Builders or Flows, to create

the Drip Campaign module (purchased separately). Read the full SMS Drip Campaigns documentation or

Watch the short video to learn more.

Drip Campaigns allow end-users (rather than Process Builder developers) to define a series of SMS

Templates or SMS Surveys (aka iText or intelligent ChatBots) to be scheduled at various intervals defined

by a Days Offset field. One can also optionally define the time of day that a message goes out.

Drip Campaigns can be assigned/stopped manually using the Drip Campaign Applied related list or

programmatically with a single process builder command. Drip Campaigns can also be stopped with a

single process builder command. Read the SMS Drip Campaigns documentation for the programmatic

methods of starting and stopping Drip Campaigns.

Figure 26 - Drip Campaign are defined by a series of SMS Templates or Surveys to fire at different Days and Times.

https://boldercrm.com/download.php?f=360-SMS-Drip-Campaigns.pdf
https://boldercrm.com/download.php?id=%2Fpersonal%2Fsteve_boldercrm_com%2FDocuments%2F360SMS%2FDripCampaignDemo%2Emp4&parent=%2Fpersonal%2Fsteve_boldercrm_com%2FDocuments%2F360SMS&cid=82a1bf8c-7a48-4e21-bfe4-1c59fbe1af20
https://boldercrm.com/download.php?f=360-SMS-Drip-Campaigns.pdf

40

Figure 27 – Define each days Template or Survey by defining the days offset from the day it is applied + an optional time of day

Figure 28 - Drip Campaign Applied creates Scheduled SMS records at the given Days Offset + Time of Day (if specified)

41

iText, Surveys, ChatBots (iText – Intelligent Texting)

The 360SMS Survey structure is a powerful feature that automates the entire Question/Answer dialog

without the use of Process Builder or Templates. Answers and their related question are written to the

SMS History but when using an iText/Survey that dialog is additionally stored in a Survey Response

object for even greater reporting and automation potential. Survey’s allow a question to have multiple

answer paths which then branch to additional questions with their own multiple answer paths and as

many branched questions/answers as your heart desires.

A survey can be triggered either via traditional Process Builders using the methods described in Method

#1 or Method #2 above, or a survey can be triggered automatically by defining an inbound keyword.

Survey’s work best when the question is presented with clear answer choices such as “Reply YES or NO”

or with multiple choice answers where the call-to-action is to “Reply with a number” or “Reply with a

letter or combination of letters.” However, it works well for open-ended answers as well, e.g. “Reply

with your desired Loan Amount (numeric answer only please)”

Lastly, survey replies can easily update field values in Salesforce objects or take other actions without

Process Builders or Flows using the Survey Response Action Handler module from Bolder CRM or do it

yourself with Process Builders/Flows on the SMS History or Survey Response object by inspecting the

incoming answer to a specific question. Read more @ Surveys and Incoming Keyword Processing

Figure 29 - Typical Chatbot Survey sent to a new lead

https://boldercrm-my.sharepoint.com/personal/steve_boldercrm_com/_layouts/15/onedrive.aspx?f=360-SMS-Surveys-and-Incoming-Keyword-Processing.pdf

42

Using Salesforce Flows

The Salesforce Flow technology is worth a short discussion as it provides considerably more power than

Process Builder, such as the ability to add complex business logic, use variables, more robust formulas,

lookup records and recordsets, loop through records, delete records and more.

Below we demonstrate a more powerful and easier method for Event Reminders documented in the

SMS Event Reminders guide. With flows we can easily workaround the limitations of the Salesforce

EVENT object and best of all we can COPY/PASTE components and document our code!

Figure 30 - Example of an SMS_History Incoming process builder triggering a call to a flow.

https://boldercrm.com/download.php?f=360-SMS-Event-Reminder-Triggered-SMS.pdf

43

Figure 31 – A classic flow w/ Lookups (Get Records), complex Decision logic, Loops, Delete Records and Create Records for the Scheduled SMS’s

With the more powerful capabilities of FLOWS we can handle logic for a New, Updated or Cancelled EVENT.
We can easily handle the problems with the Salesforce Event.WhoId’s polymorphic (where Process Builder
will not let us traverse up to the Contact/Lead). And lastly, we can loop through the Scheduled SMS records
to delete them if needed. Contact Steve directly if you want this Flow for your own Org.

44

Figure 32 - The creation of the Scheduled SMS is the same as a Process Builder – but you can COPY/PASTE components in
FLOWS!!!!! And you can use the DESCRIPTION in every component to document your code!

45

Troubleshooting SMS Process Builders, Flows and Scheduled SMS

This section covers some basic troubleshooting techniques for triggered SMS. Debugging process

builders and flows is intense and tedious work involving the customers business logic and thus even

though it is common for the customer to think the platform is misbehaving there is always an answer in

the coding or with the Salesforce users that are triggering the process. As a result, technical support

cannot debug process builders or flows. Consulting agreements are available though.

1. Always assume that your SMS is not firing because of a problem with your business logic, its

parameters or with the user or sender number triggering the process. You’ll save yourself a lot

of grief focusing your efforts on these items rather than thinking the platform isn’t working.

2. Criteria – Most issues around an SMS not firing are due incorrect business logic for the criteria

within the process builder. First, remove or minimize your criteria to see if the SMS will fire

without the criteria. Of course, this is not always practical but somehow eliminate the criteria as

the culprit first.

3. Trigger User – Many problems arise when the Salesforce user that is making the change or

creating the record that triggers the Process Builder does not have a 360 SMS License or the

user is not associated to the Sender Number in the SMS Setup → User Config.

a. Check the Created By or Last Modified user of the record to make sure they are licensed

and that the sender number being used is associated for this user in the User Config

table. This is the #1 source of “my SMS is not firing”

4. Malformed or Invalid Sender Number – Commonly we’ll see Scheduled SMS’s look as if they are

sent (isSent=True) but no SMS_History. The most common culprit is an invalid or malformed

SenderNumber. Note that the value of Sticky_Sender for most orgs is a formula based on the

field Record.SMS_Last_Sender_Number__c or if this is value is null it will get the number from

Record.Owner → User.Phone. Thus, the most common problem is a User.Phone that is not a

valid SenderNumber (often it will hold their personal cell phone number) or someone has

imported Leads with a Last Sender Number that is not a proper 360 Sender Number in the

proper format of 19998887777. The number must have the country code (1 for USA) and have

no punctuation. Note: The triggering user still must have access to the SenderNumber (SMS

User Config) either explicitly or via the All Users (see item 3 above).

5. Use the Scheduled Time feature – A fantastic troubleshooting technique is to set the

Scheduled_SMS.Schedule_Time field as documented in Method #1 above. Even if you want your

SMS to fire immediately set the Scheduled Time field to formula NOW() or

NOW() + (1/60/24) (i.e. Salesforce date math is always in days so:

1 min ÷ 60 min/hr ÷ 24hrs/day)

6. Salesforce Scheduled Actions – It is quite difficult to troubleshoot the Scheduled Actions of a

Process Builder since you can’t physically see whether or not your Scheduled Action has fired.

46

a. Consider temporarily changing your logic to use the Scheduled Time field in method #1

to “schedule” the SMS as a Scheduled SMS related list item rather than using the

Scheduled Action. This confirms whether your criteria is the problem or something else.

7. Object + Template mismatches – Remember that when using Method #1, the Scheduled SMS

Name value is the Id of the object which must match the object of the SMS Template or (Survey)

Question parameter. Object Id + Template Id mismatches are common problems.

8. Integration Users – commonly customers will have integration processes like Pardot/Marketo

or website driven processes that create or update records under the context of the Site Guest

User. Since this is not a traditional user it can create problems as the user cannot be assigned a

license in the traditional way and people commonly forget to create the necessary User Config

record associating the User + Sender Number.

a. You may need to Contact technical support as licensing for Site Guest Users and other

integration users can sometimes be complicated due to how Salesforce treats these

“users.”

9. App User – the system administrator that installed the app is the Created By user for all

incoming SMS History records. Often the original system administrator will give up his license or

will neglect to assign himself to all the possible sender numbers that might be used.

a. This is especially the case when triggering off of the SMS History or Survey Response

objects where the App User is always the CreatedBy or LastModified User.

b. You can reassign the SMS App User by having another Sys Admin user press the

Incoming/Outgoing Setup button and changing the App User in SMS Setup → General

Settings.

c. Hyperlink Click Triggers – If triggering off the SMS History or Message URL object (the

object that holds the click count to trackable links sent to customers), pay special that

this user is the special “Incoming SMS Site Guest User” created when Hyperlink tracking

was set up for your org. In other words, when a hyperlink is clicked this is the user that

updates the click count. That user is already licensed but admins commonly forget to

associate this user to a one or more sender numbers.

10. Salesforce Record Ids - When using Salesforce record ID values in your criteria be aware that

Salesforce Classic will often present only the 15 character ID of the record in the URL whereas

the actual value is almost always stored in the database as an 18 character ID.

47

a. This is common when detecting an Inbound SMS responding to a particular Survey

Question or Template where you might be taking some sort of action on the answer

based on that particular question/template (since the Incoming SMS inherits it’s

previous Outbound QuestionId or TemplateId).

b. Either always compare an 18-character Id to an 18-Character Id or compare the first 15

characters to a 15-character Id.

LEFT(somefield, 15) = ‘003f400000P3noE - where we’ve stripped off the last 3

characters

48

About the Author

Steve Roch, CEO of Bolder CRM is an SMS Industry expert having worked or consulted with the top three

SMS Apps on the Salesforce AppExchange and also having built the popular Salesforce app ActionGrid™,

acquired by Conga in April-2016 and now renamed Conga Grid™. Bolder CRM is the exclusive

distributor of 360 SMS in the United States, Canada and the United Kingdom.

Learn more about Steve and Bolder CRM at https://boldercrm.com/360SMS and
https://www.linkedin.com/in/steveroch/

Call/Text: +1 720.605.0632 or +44 1234 480 564 or +61 488 845 944

WhatsApp: +1 303.800.3258 or click here initiate a WhatsApp convo with Steve

Email: steve@boldercrm.com

https://boldercrm.com/download.php
tel:+61488845944
https://api.whatsapp.com/send
https://www.linkedin.com/in/steveroch/
https://getconga.com/products/data-management/actiongrid/
https://boldercrm.com/360SMS
https://boldercrm.com/download.php
mailto:steve@boldercrm.com?phone=13038003258&text=Yo%20Steve%20-%20Let%27s%20chat%20via%20WhatsApp.%20~%20Source=PBDoc&source=&data=&app_absent=
https://boldercrm.com/download.php?phone=13038003258&text=Hello%20Steve%20-%20Let%27s%20chat%20via%20WhatsApp.%20I%27m%20initiating%20this%20msg%20from%20your%20Process%20Builder%20doc.&source=&data=&app_absent=
https://boldercrm.com/download.php?subject=360SMS:%20

